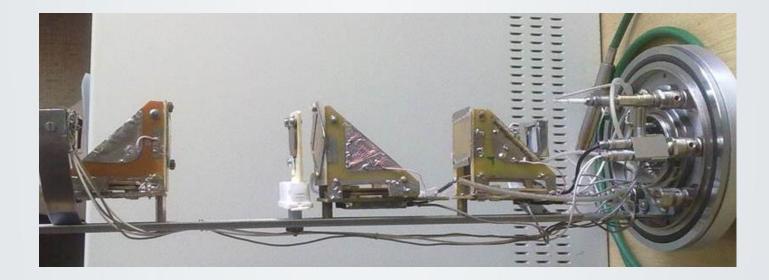


UNIVERSITEIT STELLENBOSCH UNIVERSITY

UNISA University of south africa



University of Fort Hare Together in Excellence

Virtual Laboratory of Nuclear Fission

Virtual Laboratory of Nuclear Fission

The goal of the project is to include current scientific data into the educational process, to conduct virtual and online laboratory research based on using modern scientific equipment and data obtained from the existing physical facilities.

Project Team

Members, involved in the project:

- 1. Stellenbosch University, South Africa
- 2. iThemba LABS, South Africa
- 3. University of Western Cape, South Africa
- 4. University of South Africa, South Africa
- 5. University of Venda, South Africa
- 6. University of the Witwatersrand, South Africa
- 7. Joint Institute for Nuclear Research (JINR), Russia
- 8. National Nuclear Research University MEPhI, Russia
- 9. InterGraphics LLC, Russia

Project Team

Project Leaders:

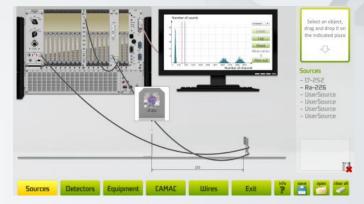
Noel Mkaza, Shaun Wyngaardt, Mantile Leslie Lekala, Vusi Malaza, Dmitry Kamanin, Stanislav Pakuliak, Yuri Panebrattsev, Victoria Belaga, Kseniya Klygina, Yuri Pyatkov.

Leading methodists: Natalia Vorontsova, Marina Osmachko, Vusi Malaza.

Leading experimentalist: Alexander Strekalovsky.

Leading programmers:

Pavel Semchukov, Pavel Kochnev, Eugeny Dolgy.


Leading computer designers:

Nikita Sidorov, Eugeniya Golubeva, Anna Komarova, Dariya Zhuravleva

Virtual Laboratory of Nuclear Fission

Software complex "Virtual Laboratory of Nuclear Fission"

Interactive environment for nuclear experiment modeling (Setup Builder)

Hardware complex "Virtual Laboratory of Nuclear Fission" for student practices

Interactive web-version of the project

The project is comprised of three educational levels:

Elementary level. A typical target group at this level are high school students, science teachers, undergraduate students and participants of summer practices.

Basic level. The goal at this level is to study various types of radiation detectors, nuclear electronics & DAQ systems and some important methods of experimental data processing.

Advanced level. A typical target group at this level are students who plan to prepare their bachelor and master theses based on the measurements at the LISSA project. This level may be useful as a training before independent work as experimentalists in nuclear physics.

Input knowledge

Elementary level: high school physics

Basic level: university course on general physics; section "Nuclear Physics"

Advanced level: university courses "Quantum Physics" and "Nuclear Physics"

Project content

About: About Virtual Laboratory of Nuclear Fission

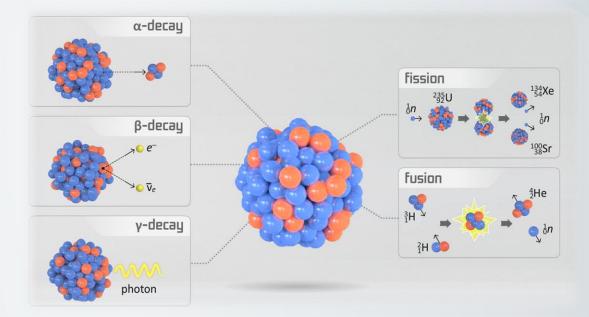
Part 1: Some Concepts of Nuclear Physics

Part 2: How to Measure Radioactivity

Part 3: Theoretical Models of the Atomic Nucleus

Part 4: How to Measure Nuclear Fission

Part 5: Light Ions Spectrometer – Measurements


Part 6: Light Ions Spectrometer – Data Analysis

Part 7: Interactive Environment for Nuclear

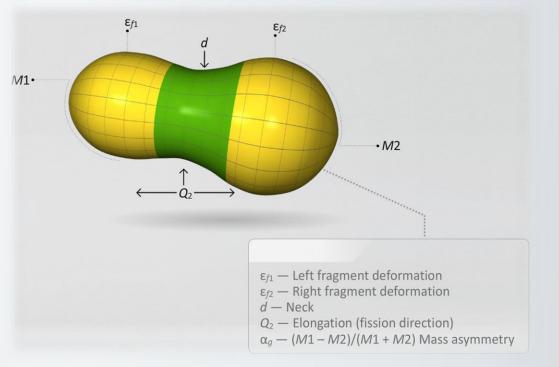
Experiment Modeling

Part 1: Some Concepts of Nuclear Physics

- 1. World of the Atom
- 2. Atomic Nucleus
- 3. Mass and Energy
- 4. Fusion and Fission
- 5. Radioactivity:
 - Alpha Decay
 - Beta Decay
 - Gamma Decay
 - Spontaneous Fission
- 6. Radioactive Decay Law
- 7. Quiz
- 8. Exercises

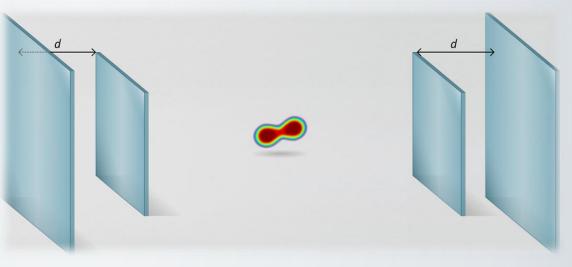
Part 2: How to Measure Radioactivity

- 1. Introduction
- 2. Radioactive Sources
- 3. Interaction of Radiation with Matter
- 4. Radiation Detectors:
 - Gas-Filled Detectors
 - Scintillation Detectors
 - PIN Diodes
 - Detectors Based on
 - **Microchannel Plates**
- 5. Measurement of
- Radioactivity
- 6. Quiz
- 7. Practicum

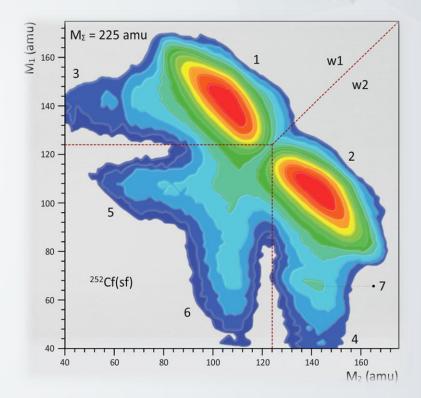


	Gruppe D.	бгирре 1.	Gruppe II.	Gruppe III.	Gruppe IV.	бгирре V.	Gruppt VI.	Gruppe VII.	Gruppe VIII.
1.	1999	ĥ						1	No. ME
2	fie 4	Ciz	Beg	Bıı	C12	1114	016	F19	
3	20The	23]]a	24 Mg	2781	28Si	31P	325	35 5CI	
4	FI 40	K39	Ca 40	Sc45	Ti45	D 51	Cr.52	Mn.55	Fess. Coso. 11:50.
5		64Cu	653n	7064	7260	75 As	79 Se	soBr	
6.	Kr S2	Rbs5	Sr87	USO	3190	11b94	Mo96	Ma 100	Rate Ratos Philos
7.		108Ag	11200	114In	119Sn	122Sb	128 Te	1271	
s.	X 131	Cs133	Ba137	La139	fif 178	Ta182	10184	Re 190	Osian Ir 103 Prios
		197Hu	201 fig	204T	207Pb	209B	84	85	
	Em222		Ra226	Rc230	Th232	Pa235	11238		

Part 3: Theoretical Models of the Atomic Nucleus


- 1. Introduction
- 2. Nuclear Models
 - Liquid Drop Model
 - Fermi Gas Model
 - Shell Model
 - Collective Model
- 3. Quantum Mechanics in Nuclei
- 4. Fission and Quantum Tunneling
- 5. Basic Regularities of Spontaneous Fission
- 6. Collinear Cluster Tri-
- Partition (CCT)
- 7. Quiz
- 8. Exercises

Part 4: Nuclear Fission Experiment


1. Introduction

2. Physics of Binary Fission 3. Methods of Detection of **Fission Fragments** 4. Energy Measurements of **Fission Fragments from** Californium-252 5. Time Measurements of **Fission Fragments** 6. Quiz 7. Practicum

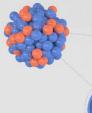
Part 5: Light Ions Spectrometer – Measurements

- 1. Physical Motivation
- 2. LIS Setup
- 3. Electronics of the LIS Setup
- 4. Block Diagram and Data
- Acquisition System
- 5. CAMAC Practicum
- 6. PIN Diode Calibration
- 7. Time of Flight Calibration

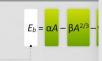
Part 6: Light Ions Spectrometer – Data Analysis

- 1. Introduction
- 2. Data Viewer
- 3. Preparation to Time Calibration
- 4. Time Calibration
- 5. Preparation to Energy Calibration
- 6. Energy Calibration
- 7. Mass Calculation

Theory

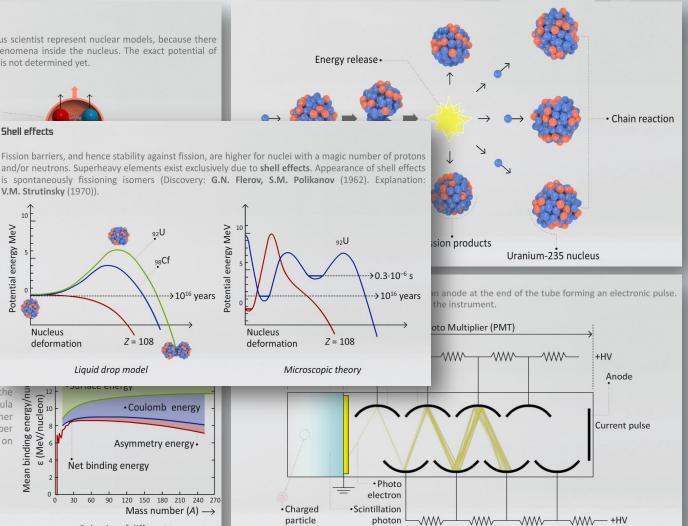

Nuclear Models

For explanation of properties of the atomic nucleus scientist represent nuclear models, because there are not a theory which could describe all the phenomena inside the nucleus. The exact potential of forces acting between nucleons inside the nucleus is not determined yet.


MeV

otential

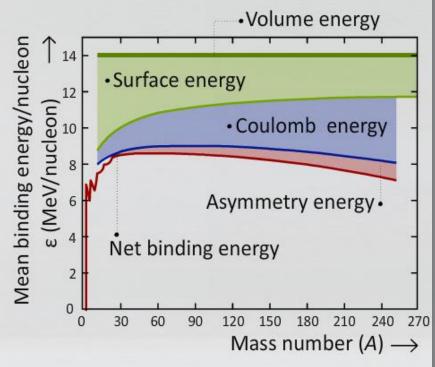
Behavior of different terms



Each nucleon inside the nucleus can be describe and momentum characteristics p_x , p_y , p_z ... There variables. The task becomes indefinitely compl

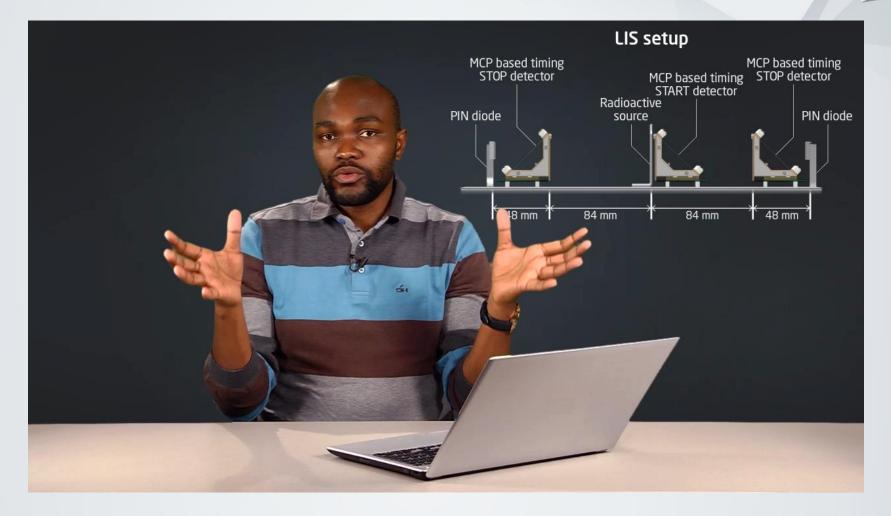
Binding energy

The binding energy E_b of any nucleus of r number A and atomic number Z is given by the Weizsäcker's formula. In nuclear physics formula is used to approximate the mass and various other properties of an atomic nucleus from its number of protons and neutrons. It is based partly on theory and partly on empirical measurements.

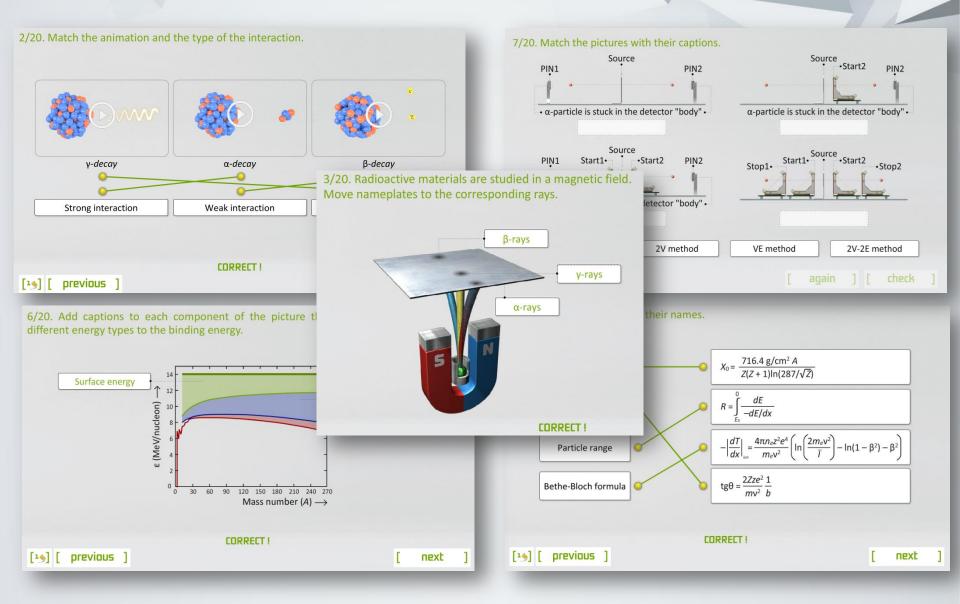

photon L

Theory: Interactive Formulas

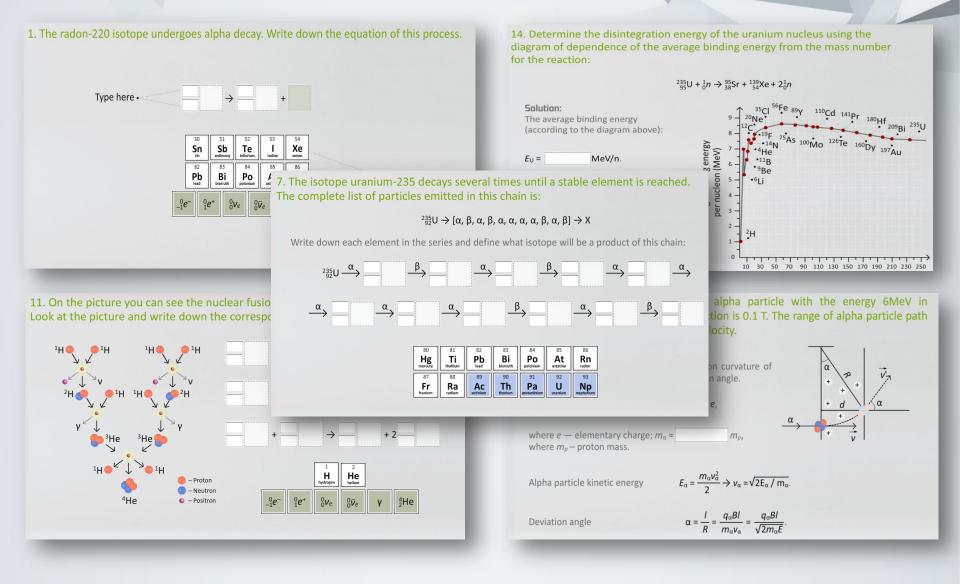
$$E_{b} = \alpha A - \beta A^{2/3} - \gamma \frac{Z^{2}}{A^{1/3}} - \varepsilon \frac{(A/2 - Z)^{2}}{A} + \delta$$


Binding energy

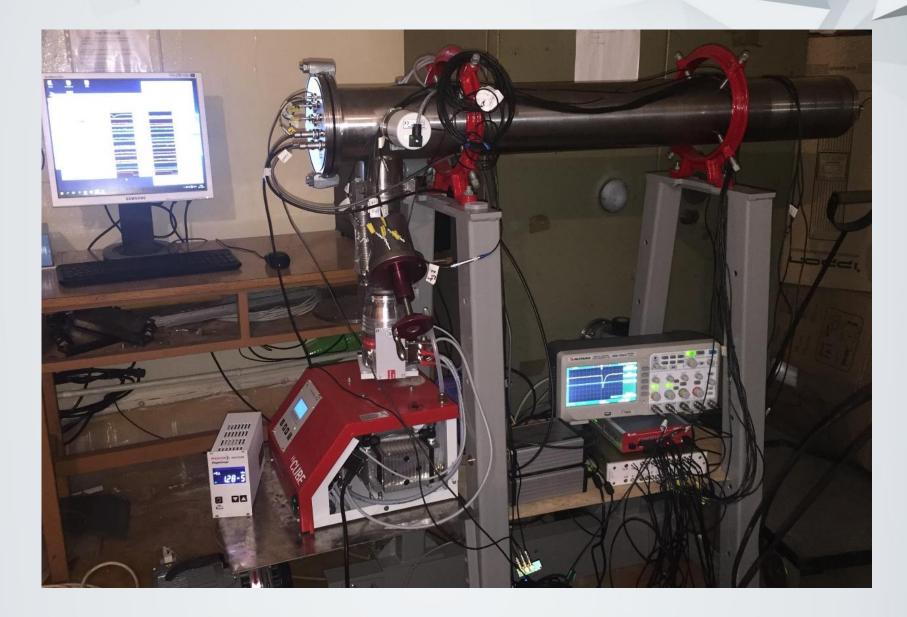
The binding energy E_b of any nucleus of mass number A and atomic number Z is given by the Weizsäcker's formula. In nuclear physics formula is used to approximate the mass and various other properties of an atomic nucleus from its number of protons and neutrons. It is based partly on theory and partly on empirical measurements.



Behavior of different terms


Video Lectures

Vusi Daid Malaza. Stellenbosch University, Faculty of Military Science, Military Academy, Saldanha, South Africa Quizzes


Exercises

Virtual Practicum

Light Ions Spectrometer

Light Ions Spectrometer

Data Analysis

600

400

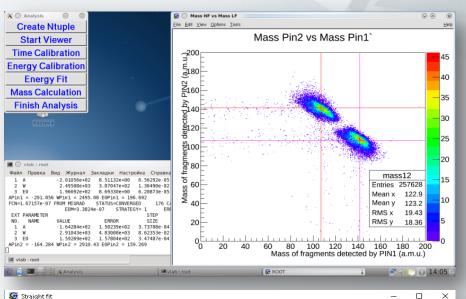
200

0

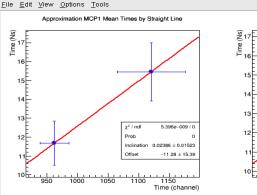
1000

1500

500


Sigma MCP1 LF TOF

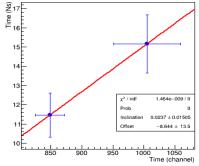
2000 2500 3000 3500


 23.3 ± 0.1

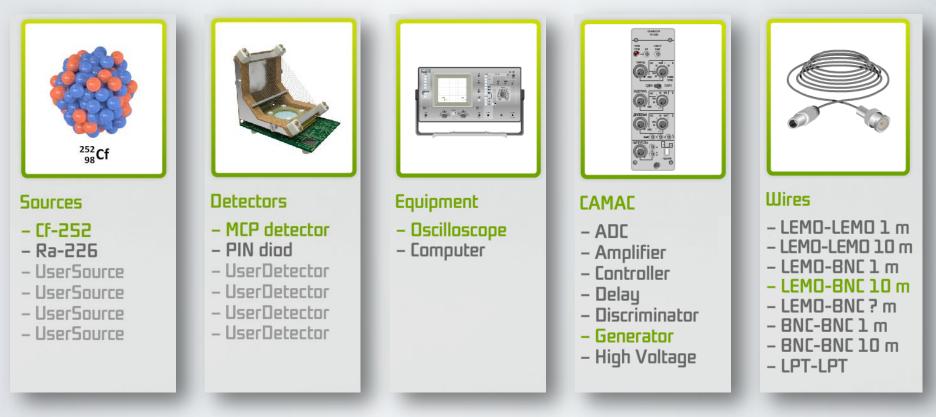
4000

Time (channel)

🚱 Straight fit

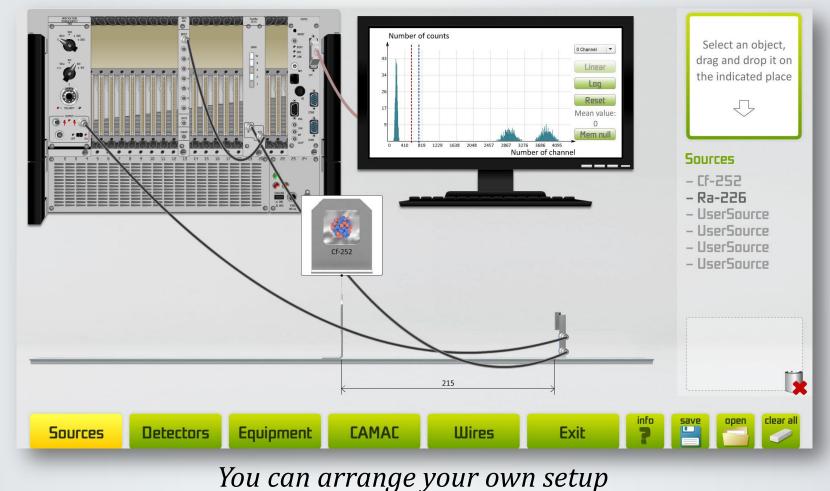


Approximation MCP2 Mean Times by Straight Line


_

×

<u>H</u>elp



Hardware-Software Complex "Interactive Environment for Nuclear Experiment Modeling"

Libraries of the Setup Builder

Hardware-Software Complex "Interactive Environment for Nuclear Experiment Modeling"

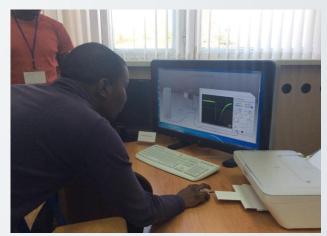
Hardware-Software Complex "Interactive Environment for Nuclear Experiment Modeling"

Eile Edit View VM Team ACE Windows Help	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
🚱 Windows XP Professional 🎬 W7		×
SocketClient - Microsoft Visual Studio Ele Edit View Refactor Broject Build Debug Data Tools Window Community Help		
	8 🗉 🗆 -	
國 정말 써 告告 글 등 다 안 야 한 것 않 것 하		
TBlock.cs TDetector.cs SocketConnection.cs TParticle.cs Const.cs TAbstractObject.cs TSource.cs* Form1.cs [Design]	✓ X Closs View	- P
SocketClent.TSource @GetSpontz		• 🗈
Random rnd = new Random();	Sockettlie	ent
<pre>res[0].E = rnd.NextDouble() * 2 + 106; res[0].Pz = 1; res[0].m = 248.072349555; // LF</pre>	ie ⊆ arboet g⊢O source ie-O source	lient
<pre>//HF res[1].TypeOf = Const.TypeOfParticles.; res[1].E = rnd.NextDouble() * 2 + 14</pre>		
res[1].Pz = -1; res[1].m = 252.081626555; // HF		E
<pre>if (rnd.NextDouble()>0.5){ res[0].Pz = -1; res[1].Pz = 1; }</pre>		
return res;	Properties	- 9
	###### #######	
//#####################################	######### ######### ######### ########	
//#####################################	;######## #########	
C Eror List	- 1 x	
2 Error A O Warnings 0 O Messages		
Description	File Line Column Project	
0 1 Identifier expected	TSource.cs 131 51 SocketClient	
		1

You can develop your own sources and equipment and integrate them into the Setup Bulider

Student Practices

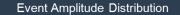
Live lectures

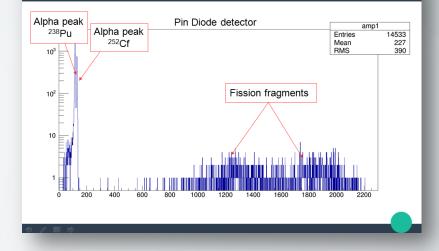

Real equipment

Lab exercises

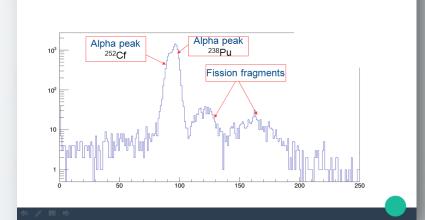
Virtual labs

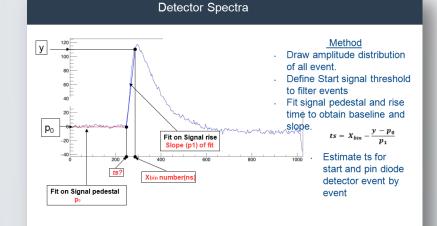
Student Practices

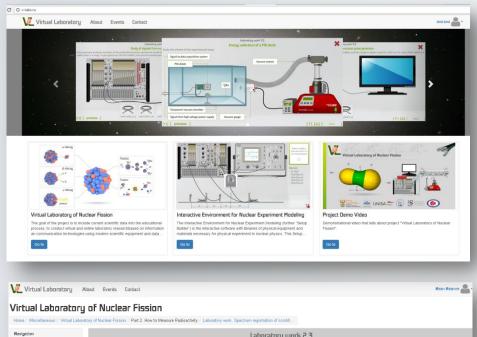

Virtual Laboratory of Nuclear Fission

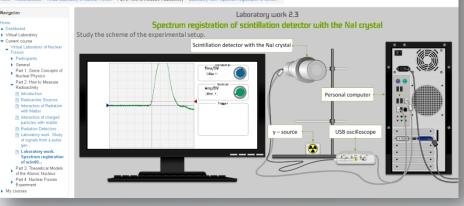


Data analysis of LIS spectrometer signals from 5 GS/s Switched Capacitor Digitizer.


Kehinde Gbenga Tomiwa, University of the Witwatersrand


JINR - SAR, September 2015





Web-version of the Project. Advantages

- 1. Access through the Internet.
- 2. You can control the educational process as a tutor.
- 3. You can see the progress of passing the course as a student.
- 4. You can communicate with peers and tutors.

